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APPLICATIONS OF SEMI-REGENERATIVE THEORY TO COMPUTATIONS
OF STATIONARY DISTRIBUTIONS OF MARKOV CHAINS*

by

W. K. Grassmann and Michael I. Taksar

1. Introduction

.;D Arguments from Regenerative Theory have been used by a number of
authors to solve equilibrium equations in queueing problems. In parti-
cular, these arguments are prominent in the matrix-geometric/ solution
pioneered by Neuts [1981], but they are also used by Kle;n;ock [1975] in
order to analyze the GI/G/m queue and by Grassmann and Chaudhry [1982].
Since there is a number of applications for these methods, it seems
appropriate to investigate them in further detail.

~—>In this paper we use Semi-Regenerative Theory, which is a general-
ization and sophistication of Regenerative Theory. We believe that this
is the first paper which uses Semi-Regenerative Theory for developing
numerical (nonsimulation) algorithms to find the steady-state distribu-
tion of a Markov chain. The algorithm obtained is a modification of the
Gauss-Jordan method, in which all the elements used in computations are
always nonnegative, which makes the algorithm numerically stable.‘/

To apply the theory in question to a given Markov chain (Yn;n =

0,1,...) we must represent the latter as a semi-regenerative process.

To this end we consider a subset D of the state space of Yn and wve

*This research was supported by the Office of Naval Research Grant ONR-
NOOO14-79-C-0685 at the Center for Research on Organizational Effi-
ciency, and National Science Foundation Grants ECS 8204540 and ECS
8017867, at the Institute for Mathematical Studies in the Social Sci-
ences at Stanford University.
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record successive visits of the chain Y, to this subset. Let T,

n=12,..., be the time of n-th visit to D and X, be the position
of the chain at Tn‘ Then the process (Xn,Tn) is a Markov Renewal
process (see Cinlar [1975] Chapter 10) and Y, is a semi-regenerative
process with T, Dbeing the seri-regenerative epochs and (Xn,Tn) being
the irbedded Markov Renewal process.

The latter means that if we consider the "cycles"

A ={Y LY }

n T T +l""’YTn-l

n-1 n-1
then the conditional distribution of the sequence (An’An+1s---) given
the past of the process up to T,_j, depends only on Xp_j> and all
A, are conditionally independent given (X-,T+),
The analysis of the behavior of Y, £ fror one semi-regenerative

epoch to another produces the main relation between the steady-state

probabilites that is used for develcping the algorithm.

2. Proof of the Main Result

We consider an irreducible aperiodic positive recurrent Markov
chain Y, W%ith a state space g = {0,1,2,...}. It is known (see
tinlar [1975], Chapter 8) that such a chain reaches a steady state,

i-en,

Pi{Yn =3} +p J=0,1,.0. ,

J 2
or in a shorter version

Y =Y
n

{
1
]
“




where Y 1is an integer-valued random variable with distribution

(pospyse++)e Here P {¢} = P(+]Y, = i}. The notation E; must be

understood in a similar way. Let

D=1{0,1,2,00., d = 1}
and
(2.1) T = min {m > O: Y € D}
Put
T-1
(2.2) V}Eid) = Ek{mzoli(Ym)} =E{fm: m<T and Y_ = 1)

Theorem: Let (py,...,p,) be the steady-state distribution of

the Markov chain Yn. Then

9 )

, = v..'Dp
i k=0 ki fk

(2.3) P

Proof: Consider the process 2Z; = Y[;|, where [t] 1is the

integer part of t. Let

i 3
T - 4 ’.. ,- 2 .
@, 242 Z{,, h
(2.4) Xn = YT E ZT e v -
n n (9 a IR -
- i R “ »
n. At
% [ RN
v l

\ J...a -

e e e g




Then for each n 2 1 we have

(a) T, is a stopping time for Z.
(b) X, is determined by ({(z ; u< T}
u n

(¢c) for each function f defined on E™ and each

By < tp < eel <ty

1 . <
EAf(Zg 4p sevesZp 4y )25 u < T/
n 1 n m

= EJ{f(Zt sevesly

)} on the set {X_ = 3}
1 m n

Really, (a) follows from the definition of T, (b) is a consequence of
(2.4) and (c) is due to the strong Markov property of Y.

In particular X, is a Markov chain in the state space
D=1{0,1,se., d - 1}, This chain is irreducible because the original

chain Y  is irreducible. Let v,, i = 1,2,..., d -1 be the (unique)

invariant distribution for Yn. Let

m(i) = E (T}
and
Kt(J,i) = Pj{zt =i, T >t} = Fj{Yltl =1i; Y, D, for k< T}
According to {inlar [1975], Chapter 10, Theorem (6.12)
(2.5) lim P {2, = 3} = ( ) m(&)v )7L LV TK (k,j)dt .
too - T 2ED Y7 wep ¥o °

We must mention that (2.5) was proved in Sinlar [1975] under the

assumption that (X,T) 1is a positive recurrent, irreducible and




aperiodic Markov renewal process. In our case, (X,T) 1is irreducible
and positive recurrent due to similar properties of Y, but (X,T) is
not aperiodic. The random variables T, are always integer valued.
Since Y, is aperiodic (as a discrete Markov chain) then (X,T) is
periodic with period one. However, the proof of (2.5) in Cinlar [1975]
goes through without change for the process Z such that Zt = Z[tl
and such that the period of the imbedded Markov Renewal process is 1.
The function Ki(k,J) is piecewise constant, namely

Kt(',') = K[t](.’.) hence (using Fubini's theorem below)

(2.6) jKt(k,J)dt = 7; K (k,5)
0 m=0
= méopk{zm =4, T>m = EOPk{Ym =4, T>m
= T By }—E{T:ll (Y )} = vid)
LB Yl in! = B LU= g
On the other hand
(2.7) 3: Pi{zt = J} = 11;: Pi{Z[t] = j} = ;ﬁf Pi{Ym =3} = P,

Combining (2.5), (2.6) and (2.7}, we have

(d)

= -1l -
(2.8) py = ( vzm(x)J Hékaka

7
€D
Let us apply (2.8) for j € D. It is easy to see that if

k,J €D then ,
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0 if k# |

L0
J 1 if k = §

Therefore, for j € D formula (2.8) becomes

v,
(2'9) pJ = ...:_~_\L.__
L v, m(x)
) )2
D
i Now, substituting (2.9) into {(2.8), we get (2.3).
The next proposition describes the relations between vﬁj) for

different k,J and d. Its significance will become clear later when

we develop a numerical algovithm.

Proposition: Let vég) be given by (2.2), and let P;j be the

transition probabilities of the Markov chain Y,. Then

(2.10) vﬂg) = vﬂq+l) + v(§+l)vﬁd) , k* d
KRS KS dy kd
d) - (d)

(2.11) v( = + ‘ . , k#td
kd = Pka Jﬁvad Peg

. Jo=1 .

(2.12) viq) = v£9) + véi)v(f) » J 2 d

J J m=d m
Proof:

1) Let D consist of the first d points from 0 to d -1

and let T be defined by (2.1). Let T be the first hitting time of

the point d. Then we can write




=T-
(d)
(2.13) Ek{ 2 1 (Y, )}
TAE'I()} (7 (1)
= E{ Y ) + 1.(y )}
Ek n=0 Ek n=Tat J

The first term in the right-hand side of (2.13) is obviously equal to

(d+1 )
k)

sion in the right-hand side of (2.13) equals zero. On the set T < T

. Next, we must notice that if t > T <then the second expres-

we can use the strong Markov property to obtain

Tl (d)
(2.14) Ed I 1 {y }} Ek{v

n=TaT

(d)

dJP{1<T}

T <T} =

Substituting (2.14) into (2.13), we get

(d) (d+1) (d)P {(t <T

(2.15) Vi Vi Vay Py

Now, iterate (2.15), namely, put k = d in (2.15) and substitute the
value of vég) in the right-hand side of (2.15). We get

(2.16) ij) ij*l) + Pt < T)[v(d*l) éj)Pd{T < 1)

Iterating (2.15) n times, we get

(2.17) UERCEES XIRE:1 Z va"”(Pd{r <1)®

(P {r <)% (d)l

Ir Pd{T < T} =1 then, using the strong Markov property, we get that

Pd(T < w} = 0, vhich contradicts the assumption that Y = is




irreducible. Therefore, Pd{T < T} <1 and we can pass to the limit in

(2.17) as n + =,

(2.18) VS) = v}((fj‘*l) + v((131+1)m£0pk{r < TH P lr < TH™

Using the strong Markov property once more, we see that if k # d, then

o ®  T-1
(2.19) L P it < THP{t < n)%= 3 Pl T 140Yy) > m
m=0 m=0 * £=0
T-1
- < (a)
=E{)1.(Y )} =v
k 220 [+ R 2 kd

Combining (2.18) and (2.19), we get (2.10).

2) To prove (2.11}, write (below we use the fact that T =1 on

the set Y| € D)

(d) _ o (5 -k
(2.20) Vied = Ek{mﬁlld(Ym)lT>m} = B {14(Y,)1q,,}

+ Ek{IE\D(Yl)Ek{mield(Ym)lT>m]Yl}}

If ¥, =4 then obviously T > 1; therefore, the first term in

the right-hand side of (2.20) equals

E (140001550} = B{1,(0,)} = p 4

Due to the Markov property, the conditional expectation in the

second term in the right-hand side of (2.,20) equals
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(a)
Ey { 2 1,01 1 = v
Y1 w1 o td
and hence (2.20) becomes
Jla) d
Ved =gt Ek{vf{l}i Lpap (Y
Pya yd
3) Formula (2.12) generalize . .0), its proof and the ideas

behind the proof are similar to those of (2.10), but require more compu-

tations, and we omit them here,

3. An Algorthm to Find Equilibrium Probabilities

In this section, we present an algorithm to find the equilibrium

probabilities py, Which will then be interpreted in terms of the

G
Vi)

also be exploited in a number of ways as will be shown.

. This interpretation is interesting for its own sake, but it can

The equilibrium probabilities p; are given by the steady state

equations, that is

(o)
M
el
[
.
o
| 12

pi(piJ - é‘-) b3 J = O,l’QOO’N 3

J 2o 1J

Here 611 is 1 if i = J and zero otherwise. To find the Pi, we
proceed as follows. We solve the Nth equation for Py. and eliminate

py from all other equations. Then, we solve equation N -1 for py_q»

and eliminate Py_y from all other equations, except from equation
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N. We continue tiis way until we solve the first equation for Pi. In
other words, we always use the diagonal element as pivot, and we apply
Gaussian elemination, starting with equation - N and ending with equa-

tion 1. If a?J are the values obtained before solving for p,, one
i

has
N
85 = Py~ %4y
and
an
(3.1) a§;1=--;ﬂ,o<i<n
ann
(3.2) allt =al +alalt L 0<icn , 0¢yan
J
(3.3) a?fl = al
1J 1J

n

This method can only be applied if all ann > 0. This is where the

theory presented earlier is helpful. Clearly, the elimination procedure

gives

It is also clear that the EPJ are uniquely determined by the Pik»
1

k » J. On the other hand, we have equation (2.3), which implies

o

3)
P, = L PV,
ooz U
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Here, the vig) are similarly determined uniquely by  J k> J.

Hence

(3.4) a? = v(J)

13 1) s J>n .

This implies that O < agj <=, 3>n.

plies that a:n cannot be equal zero.

one has

(3.5) a = - J=oanJ .

We can even say more,

To prove (3.5), we show by complete induction that

n
(3.6) Y &%, =0
j=0 ™

Clearly, this equation holds for n =

Because of (3.3), we only need to consider the case where J < n.

Equations (3.1) and (3.2) then give

N.

n-1 n-1 an ?
2 an-l - (an nJ 1n)
-n 1J LA®43 T n
=0 J= %nn
n-1 n-1 a
- n n
= L 8 Z a,
J= 1 J=0 1 a
n-1 n
= n n_
Jzoaij te, = L

This proves (3.6), and with it (3.5).

We now prove (3.6) for

This, together with (3.1) im-

Indeed,

n—lo
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At this point, it should become apparent that the elimination
suggest .. by (3.1) to (3.3) can be done without ever using subtractions

or negative numbers. We merely need to replace a"n in (3.1) vy (3.5),
n

giving
ah
(3.7) R S LERE
al
Lot

and omit (3.2) for the case that i = j. Equations (3.2) and (3.7)
involve then only ajj with i # j, and these will always remain posi-
tive, given they were positive to start with.

Because of (3.4), the elimination described by (3.2) and (3.7)
gives for n =0

- W) -
(3.8) ]Eopl i3 [ pl 15 sy J=1,2,.00,8

From (2.12), we find

(1) (.J)

0j klOkk

(3.9) vy

(1)

Relation (3.9) allows one to find Yo recursively, once V(J) is

0J

given. Once all v(l) are found, Py becomes

0J

l

Pg =
1+ 1 v(”)
J=1

(3.10)

- (1)
pJ-pooJ ’

J>0 .
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With this, all py are found, and we can now count how many operations
are needed to find all Py» J =0,1,...,N.
We note that for each n, Zanj has to be calculated, which gives

n operations, equation (3.7) must be applied n times, requiring

another n operations, and equation (3.2) is applied n? times, giving

another 2n° operations. Since n varies from 1 to N, this gives
(see also E. Isaacson, H. B. Keller [1966])

2N(N + 1)(N +2)

N o N
l12(n" +n)=2) n(n+1)= 3

n=1 n=1

operations. The number of operations is thus of order 2N3/3,

Frequently, there exist g,h such that Piy =0 for
J<i-g and j > 1 + h. The agJ inherit this property as can
be seen by complete induction. To find the demoninator of (3.T) then
requires only min{n,g) additions. Once the denominator is found,
(3.7) needs only be applied mini{n,h) times, which gives a total of
min{n,h) multiplications. (3.2) similarly requires a total of 2
min{n,h) ¢ min(n,g) operations. Since n runs from 1 to N, this
gives order 2Nhg operations, which is considerably less than 2N3/3
equations as long as h or g is small compared to N. The number of
operations to do (3.9) and (3.10) is always relatively insignificant.
Sometimes, the v(d), J*# 1 and J # d 8are needed as well. They
(J)

are easily found recursively from the iy ? using equation (2.12).

Moreover, by substituting vég) in (2.3) from (2.11), we find the

following interesting equation




=1k~

d-1 (4)
L Pey(Py + L pyyvg) 5 3 =000, d -1

(3.11) py =
J2d

k=0
Thus, once the vég) are found, we have J equations, and (j - 1)

independent equations, which allow one to find pJ, J=0,1,e0e, d -1,
except for a factor. Applications of (3.11) will be given in the next

section.

L, Applications

To illustrate the method, we now consider a number of special
cases and discuss some numerical results. Some of the examples dis-
cussed deal with continuous-time Markov processes. This is no major
problem because all the methods carry over to continuous-time Markov
processes, provided piJ’ i+ J 1is replaced by the rate aij- Also,
the vgg) can be interpreted similarly. The diagonal elements, that

is, the Pij - 1, respectively, the a,;, are irrelevant. We can set

ii
these elements equal to O.
In most cases considered here, Pij (respectively aiJ) are zero

for j>1i+h and j < i~ g. In this case, one finds from (3.2),

(3.4) and (3.7)

0 i<n-nh

(h-l) v, = 4

in

- h ¢
ol 0 ,n h i<n

a
L J>09n'8 n’J

ST T T T T TR e T T T e T

PO
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-
a® 4 gl v(n) O, n-he<ic<n
iJ nJ in O,b,n-g<J<n, J* 1
n-1 _
(4.2) aiJ = o
n
1] otherwise
L

It can now immediately be seen that in the case of a birth-death

= = . = > +
process, where a; ;. =); and 85 5.1 = My By 0, J>1+1 or

J<i-1, (4,2) will not be used at all, and (4.1) becomes

A
(n) _ "mn-1
vn-l n_ M
’ n

Relation (3.8) then leads to the well-known relationship !

C o i
Pj = Pj_1 w— ° :
J :
This result gives a nice check for our derivations. We also note that
our method does not pick the (less efficient) simple recursive solution
of the steady state equations.

Next, consider the EE/M/l queue, with the additional restriction

that the number of "phases" in the system is restricted to N. 1In this

case, 843 = ¥ for j=1-2,1=2,3,...,N and aiJ =2\A for

J=1i+1,1i=0,1,se., N - 1, All other aiJ’ i+ ) are zero.

Since h =1, (Lk.1) is only applied for i

n - 1, that is

(4.3) (n) —___2\

a + U

n,n-1

Equation (4.2) is similarly applied only for i

n-1, J=n -2,

which gives
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(h.b) n-1 =_n n (n) _ . .(n)
8n-1,n-2 2p-1,n-2 ¥ &y n-2Vn-1,n = "Vn-1,n

Equations (4.3) and (4.4) can be combined to give

2)
S 28 u
n-1,n (n+1) - (n+1) °
uvn,n+l e 1+ vn,n+l
Moreover, it is easily verified that v(Ni N = 2A/u. This means that
=4
vﬁgi n is really the beginning of a continued fraction
24
(N-1) _ u
N-2,N-1 1+ 2)
u
2%
(N-2) _ M
N-3,N-2 2x
u
1l +
2\
+ —
. ¥
and so on. In Table 1, the vif{ n are listed for N = 10,
u=1 and A = 0.5 and 1. It is clearly seen that the vé?i n

converge rather quickly. Then, due to (3.8),

_ .(n)
n vn-l,n n-1

p

Of course, our algorithm can solve much more complex problems than
the ones presented above. To show this, we calculated the stationary

probabilities for a number of cases. These results are given in Table

2.
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Table 1: The v(n) for the E,/M/1 queue

n-1,n

A = 0.5 A=1

(n) (n)
n vn-l,n vn-l,n
9 1 2
8 0.5 0.6667
T 0.6667 1.2
6 0.6 0.9090
5 0.625 1.0L476
N 0.6154 0.9767
3 0.6190 1.0118
2 0.6176 0.9941
1 0.6182 1.0029

Table 2: Computational results

Execution Average Largest Largest Rel.

N h f-4 Time* Difference Difference Difference
100 10 10 1.6 2 E-10 S E~10 TE-8
1000 10 10 15 SE-11 2 E-10 2E-T7
100 20 10 2.7 4L E-10 SE-9 7TE-8
100 10 20 2.7 2 E-10 2E-9 TE-8

#DEC 2050 Basic, SCORE-System, Stanford University
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In each case, the 8j3 where generated randomly, using a uniform distri-
bution between zero and 1. To find out how accurate the results are, we
solved each problem twice, except that in the second run, state O
became state N, state 1 Dbecame state N - 1 and so on. Absolute and
relative deviations between these two methods are also given in Table
2. The execution time is the time per run in cpu seconds.
Applications are not limited to numerical investigations as the
following examples indicate.
Kleinrock [1975] investigated the imbedded Markov process of the
GI/M/m queue as follows. He defined 041 t° te the expected number
| of visits of state d Dbetween two visits of state d - 1. 1In the

process in question, it is impossible to visit state d from the states

d-2,d-3,¢s., which implies that o is also equal to the number of

d
visits to state d during a stay among the states d, d + 1, d + 2,....

In symbols, h = 1, and consequently

(d)

% = Va-1,4 °

Kleinrock proves now that

Pqg =%-1 " Pg1

a fact that immediately follows from (4.1) with h = 1. Kleinrock

argues further that ¢ is independent of d as soon as

d-1

piJ = p“k 3’ h?» 0 1is independent of J. This also follows easily
’

from our derivation, because véd% d is determined by the

pJ+k 3 J » d. More complex systems than Kleinrock's can be analyzed in
’
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a similar way. In particular, our methods can give new insights into
the matrix-geometric solution of Neuts [1981] as the reader may verify.
Next, we present two applications of the equation (3.11). The
first application concerns a system with a huge number of states, where
the probabililty mass is concentrated in a few states only, say in the
states 0,1,2,..., 4@ - 1. Such systems are encountered frequently in

connection with queueing networks at a low traffic intensity. In such

systems, we can obtain the vij) by simulation, and caluclate the Py»
J <d from (3.11), and the p;, j > 4 from (2.3).

The second application of (3.11) concerns a group of Markov pro-
cesses, in which the pjy, J > d are identical, but the pjj, J < d are
not. Since the vgg) depend only on Pij» J # 4, this means that the

(d)

vij' are identical for all these problems, and need not be recalculated.
For this case, (3.11) provides a convenient way to solve such problems.

This is of importance in the case of sensitivity analysis.

Se Conclusions

It has been shown (Grassmann [1983]) that algorithms, dealing with
non-negative elements only, and containing no subtractions, are extreme-
ly resistant to rounding errors. In this paper, we derived such an
algorithm. The algorithm combines elements from regenerative theory
with algebraic methods. The algorithm is still effective for problems
with a size of N = 1000, a range where normal Gaussian elimination
tends to fail because of the accumulation of rounding errors. The
algorithm also lends itself to exploit band-structures which are preva-

lent in many queueing problems.




’-‘n-F'--—-.l--"—-—'-'--"*

=20~

Because of the interpretation of some key elements of the algo-
rithm, using regenerative theory, the algorithm can also make theoreti-
cal contributions. In particular, it makes an argument of Kleinrock
more transparent. We also mentioned that it can be used in connection
with the matrix-geometric solutions of Neuts. Finally, the regenerative
underpinnings of our algorithm allow one to combine analytical and

simulation methods.
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